Measurement of steady-state kinetic parameters for DNA unwinding by the bacteriophage T4 Dda helicase: use of peptide nucleic acids to trap single-stranded DNA products of helicase reactions

نویسندگان

  • Bindu Nanduri
  • Robert L. Eoff
  • Alan J. Tackett
  • Kevin D. Raney
چکیده

Measurement of steady-state rates of unwinding of double-stranded oligonucleotides by helicases is hampered due to rapid reannealing of the single-stranded DNA products. Including an oligonucleotide in the reaction mixture which can hybridize with one of the single strands can prevent reannealing. However, helicases bind to single-stranded DNA, therefore the additional oligonucleotide can sequester the enzyme, leading to slower observed rates for unwinding. To circumvent this problem, the oligonucleotide that serves as a trap was replaced with a strand of peptide nucleic acid (PNA). Fluorescence polarization was used to determine that a 15mer PNA strand does not bind to the bacteriophage T4 Dda helicase. Steady-state kinetic parameters of unwinding catalyzed by Dda were determined by using PNA as a trapping strand. The substrate consisted of a partial duplex with 15 nt of single-stranded DNA and 15 bp. In the presence of 250 nM substrate and 1 nM Dda, the rate of unwinding in the presence of the DNA trapping strand was 0.30 nM s(-1) whereas the rate was 1.34 nM s(-1) in the presence of the PNA trapping strand. PNA prevents reannealing of single-stranded DNA products, but does not sequester the helicase. This assay will prove useful in defining the complete kinetic mechanism for unwinding of oligonucleotide substrates by this helicase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Displacement of a DNA binding protein by Dda helicase

Bacteriophage T4 Dda helicase has recently been shown to be active as a monomer for unwinding of short duplex oligonucleotides and for displacing streptavidin from 3'-biotinylated oligonucleotides. However, its activity for streptavidin displacement and DNA unwinding has been shown to increase as the number of Dda molecules bound to the substrate molecule increases. A substrate was designed to ...

متن کامل

Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor.

Helicases are molecular motor enzymes that unwind and translocate nucleic acids. One of the central questions regarding helicase activity is whether the process of coupling ATP hydrolysis to DNA unwinding requires an oligomeric form of the enzyme. We have applied a pre-steady-state kinetics approach to address this question with the bacteriophage T4 Dda helicase. If a helicase can function as a...

متن کامل

Bound Lac repressor protein differentially inhibits the unwinding reactions catalyzed by DNA helicases.

A partial duplex DNA substrate containing the Lac repressor binding site, within the duplex region, was constructed to examine the effect of bound Lac repressor on the unwinding reaction catalyzed by several DNA helicases. The substrate contained 90 base pairs of double-stranded DNA and, in the absence of Lac repressor, was effectively unwound by each of the seven helicases tested. The unwindin...

متن کامل

Dual functions of single-stranded DNA-binding protein in helicase loading at the bacteriophage T4 DNA replication fork.

Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading...

متن کامل

The DNA-unwinding mechanism of the ring helicase of bacteriophage T7.

Helicases are motor proteins that use the chemical energy of NTP hydrolysis to drive mechanical processes such as translocation and nucleic acid strand separation. Bacteriophage T7 helicase functions as a hexameric ring to drive the replication complex by separating the DNA strands during genome replication. Our studies show that T7 helicase unwinds DNA with a low processivity, and the results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 29 13  شماره 

صفحات  -

تاریخ انتشار 2001